数列{an}满足a1=1,an+1=(n-λ)/(n+1)an若存在正整数m当n>m时有an

 我来答
黑科技1718
2022-09-09 · TA获得超过5874个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.8万
展开全部
这个问题可以从反命题入手,我们可以假设不存在正整数m,当n>m时有an<0
那么我们就由an大于等于0恒成立及有不等式an>=0成立
也即an=[(n-1-λ)/n]x[(n-2-λ)/(n-1)].[(1-λ)/2]xa1>=0
则有:1-λ>=0 可得λ=<1
那么要存在正整数m,当n>m时有an<0
要有am<0(m<n);
则(1-λ)(2-λ)(3-λ).(m-λ)0
当m为偶数时,m-1<λ<m
当m为奇数时,m<λ<m+1 div=""> </m+1> </m
</n);
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式