当x趋近0时,求(2sinx+cosx-1)/x的极限

 我来答
世纪网络17
2022-08-23 · TA获得超过5919个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:139万
展开全部
(2sinx+cosx-1)/x=[4sin(x/2)cos(x/2)+1-2sin(x/2)sin(x/2)-1]/x=sin(x/2)[sin(x/2)+2cos(x/2)]/(x/2)
显然,当x→0,sin(x/2)[sin(x/2)+2cos(x/2)]/(x/2)=sin(x/2)+2cos(x/2)=2.
或者
因为x→0,(2sinx+cosx-1)/x为0/0型,可以上下同时求导,既有2cosx-sinx=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
启帆信息
2024-11-19 广告
启帆信息是英伟达中国区代理商,原厂授权代理,提供全面的软件技术解决方案以及NVIDIA以太网产品、交换机等产品,欢迎前来咨询!... 点击进入详情页
本回答由启帆信息提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式