求圆锥曲线上任意一点到焦点的距离公式?

 我来答
霜雪入酒云岫成诗
2022-11-14 · TA获得超过3.5万个赞
知道答主
回答量:171
采纳率:100%
帮助的人:8.3万
展开全部

设M(m ,n)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和r2分别是点M与点F₁(-c,0),F₂(c,0)的距离,那么(左焦半径)r₁=a+em,(右焦半径)r₂=a -em,其中e是离心率。

推导:r₁/∣MN1∣= r₂/∣MN2∣=e

可得:r1= e∣MN1∣= e(a^2/ c+m)= a+em,r2= e∣MN2∣= e(a^2/ c-m)= a-em。

所以:∣MF1∣= a+em,∣MF2∣= a-em

拓展资料:

圆锥曲线上任意一点M与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。圆锥曲线上一点到焦点的距离,不是定值。焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。

连结圆锥曲线(包括椭圆,双曲线,抛物线)上一点与对应焦点的线段的长度,叫做圆锥曲线焦半径。

双曲线

双曲线的焦半径及其应用:

1:定义:双曲线上任意一点P与双曲线焦点的连线段,叫做双曲线的焦半径。

2.已知双曲线标准方程x^2/a^2-y^2/b^2=1,且F1为左焦点,F2为右焦点,e为双曲线的离心率。

总说:│PF1│=|(ex+a)| ;│PF2│=|(ex-a)|(对任意x而言)

具体:

点P(x,y)在右支上

│PF1│=ex+a ;│PF2│=ex-a

点P(x,y)在左支上

│PF1│=-(ex+a) ;│PF2│=-(ex-a)

抛物线

抛物线r=x+p/2

通径:圆锥曲线(除圆)中,过焦点并垂直于轴的弦

双曲线和椭圆的通径是2b^2/a焦准距为a²/c-b²/c=c

a²-b²=c²

抛物线的通径是2p

抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式