角谷猜想被证明了吗
至今为止还没有被证明。
角谷猜想一般指冰雹猜想。冰雹猜想是指:一个自然数x,如果是奇数就乘以3再加1,如果是偶数就析出偶数因数2ⁿ,这样经过若干个次数,最终回到1。
无论这个过程中的数值如何庞大,就像瀑布一样迅速坠落。而其他的数字即使不是如此,在经过若干次的变换之后也必然会到纯偶数:16-8-4-2-1的循环。据日本和美国的数学家攻关研究,在小于7*10^11的所有的自然数,都符合这个规律。
扩展资料:
1、冰雹猜想来历
全体自然数被螺旋式吸入黑洞(4,2,1,4),再以射线(4,2,1,4)射出1976年的一天,《华盛顿邮报》于头版头条报道了一条数学新闻。文中记叙了这样一个故事:70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩弄一种数学游戏。这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:
如果是个奇数,则下一步变成3N+1。如果是个偶数,则下一步变成N/2。不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入。
为什么这种游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1。准确地说,是无法逃出落入底部的4-2-1循环,永远也逃不出这样的宿命。这就是著名的“冰雹猜想” 。
2、强悍的27
27的归一步数要经过多次剧烈波动的奇偶变换,其路径呈不光滑锯齿冰雹的最大魅力在于不可预知性。英国剑桥大学教授John Conway找到了一个自然数27。虽然27是一个貌不惊人的自然数,但是如果按照上述方法进行运算,则它的上浮下沉异常剧烈:
首先,27要经过77步骤的变换到达顶峰值9232,然后又经过34步骤到达谷底值1。全部的变换过程(称作“雹程”)需要111步,其顶峰值9232,达到了原有数字27的342倍多,如果以瀑布般的直线下落(2的N次方)来比较,则具有同样雹程的数字N要达到2的111次方。其对比何其惊人!
但是在1到100的范围内,像27这样的剧烈波动是没有的(54等27的2的次方倍数的数除外。
参考资料来源:百度百科-角谷猜想