怎么判断函数在区间上是否有极值点?

 我来答
教育小百科达人
2022-12-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

如果函数在某个区间(a,b)内可导,且有区间内一点x0,满足 f'(x0) = 0 ,此时x0 可能为极值点,也有可能不是极值点,判断方法如下:

1、如果 f'(x) 在(a,x0)上满足 f'(x) < 0, 在(x0,b)上满足 f'(x) > 0,则 f(x0)为极小值点。

2、如果 f'(x) 在(a,x0)上满足 f'(x) > 0, 在(x0,b)上满足 f'(x) < 0,则 f(x0)为极大值点。

3、如果 f'(x) 在区间(a,b)上不变号,则 f(x0) 不是极值点。

扩展资料:

在给定的时期内,或该时期的一定月份或季节内观测到的气候要素的最高值或最低值。如果这个时期是整个有观测资料的时期,这个极值就是绝对极值。

如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式