怎样用向量方法证明三角形三条角平分线交于一点?

 我来答
机器1718
2022-09-04 · TA获得超过6790个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:156万
展开全部
已知△ABC中,AD,BE,CF分别是∠A,∠B,∠C的平分线.
求证:AD,BE,CF交于一点
证明:设AD与BE交于点P,则要证CF过点P,也就是要证CP平分∠C,用向量知识分析,即要证存在λ,使得向量CP=λ(向量CA/|CA|+向量CB/|CB|)
为简便起见,设|AB|=c,|BC|=a,|CA|=b.
∵AP平分∠A,BP平分∠B
∴存在λ1,λ2,使得
向量AP=λ1(向量AB/c+向量AC/b),向量BP=λ2(向量BA/c+向量BC/a)
∵向量AB+向量BP=向量AP
∴向量AB+λ2(向量BA/c+向量BC/a)=λ1(向量AB/c+向量AC/b)
即:(1-λ2/c)向量AB+λ2/a向量BC=(λ1/c+λ1/b)向量AB+λ1/b向量BC
由平面向量基本定理,有:
1-λ2/c=λ1/c+λ1/b
λ2/a=λ1/b
消λ2,求得λ1=bc/(a+b+c)
于是向量AP=bc/(a+b+c)(向量AB/c+向量AC/b)
∴向量CP=向量CA+向量AP
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式