边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )?
1个回答
展开全部
解题思路:分别求出各个正多边形每个内角的度数,再结合镶嵌的条件即可作出判断.
正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能密铺.
正三角形的每个内角是60°,正五边形每个内角是180°-360°÷5=108°,60m+108n=360°,m=6-[9/5]n,
显然n取任何正整数时,m不能得正整数,故不能铺满.
正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺.
正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺.
故选B.
,9,边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )
A. 正方形与正三角形
B. 正五边形与正三角形
C. 正六边形与正三角形
D. 正八边形与正方形
正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能密铺.
正三角形的每个内角是60°,正五边形每个内角是180°-360°÷5=108°,60m+108n=360°,m=6-[9/5]n,
显然n取任何正整数时,m不能得正整数,故不能铺满.
正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺.
正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺.
故选B.
,9,边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )
A. 正方形与正三角形
B. 正五边形与正三角形
C. 正六边形与正三角形
D. 正八边形与正方形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询