SVM的类型和核函数选择
线性分类:线性可分性、损失函数(loss function)、经验风险(empirical risk)与结构风险(structural risk)。
核函数的选择要求满足Mercer定理(Mercer's theorem),即核函数在样本空间内的任意格拉姆矩阵(Gram matrix)为半正定矩阵(semi-positive definite)。
常用的核函数有:线性核函数,多项式核函数,径向基核函数,Sigmoid核函数和复合核函数,傅立叶级数核,B样条核函数和张量积核函数等。
扩展资料
SVM被提出于1964年,在二十世纪90年代后得到快速发展并衍生出一系列改进和扩展算法,在人像识别、文本分类等模式识别(pattern recognition)问题中有得到应用。
核函数具有以下性质:
1、核函数的引入避免了“维数灾难”,大大减小了计算量。而输入空间的维数n对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。
2、无需知道非线性变换函数Φ的形式和参数。
3、核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。
4、核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这两部分的设计可以单独进行,并可以为不同的应用选择不同的核函数和算法。
参考资料来源:百度百科-核函数
参考资料来源:百度百科-支持向量机
2023-06-12 广告