等腰三角形ABCD中,AB=AC,∠A=36°,BD为∠ABC的平方线,那么求AD/AC

 我来答
黑科技1718
2022-08-16 · TA获得超过5874个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.8万
展开全部
在等腰三角形ABC中,顶角角A=36度,BD为角ABC的平分线
角ABC=角C=72°
角ABD=角CBD=36°=角A
所以AD=BD
角BDC=角A+角ABD=36°+36°=72°=角C
所以BC=BD
所以AD=BC
三角形BCD相似三角形ABC
AC/BC=BC/CD
AD^2=BC^2=AC*CD=AC*(AC-AD)
(AC/AD)^2-AC/AD-1=0
AC/AD=(1+5^(1/2))/2 或(1-5^(1/2))/2(舍去)
所以AD/AC=(5^(1/2)-1)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式