∫cos^4xdx 怎么积分
∫cos^4xdx=1/32sin4x+1/4sin2x+3/8x+C。(C为积分常数)
连续使用高中公式cos2x=2cos^2x-1达到降幂效果。
∫cos^4 xdx
=1/4∫(1+cos2x)^2dx(cos^4x=(cos^2x)^2=[(1+cos2x)/2]^2=(1+cos2x)^2/4
)
=1/4∫(cos^2 2x+2cos2x+1)dx
=1/4(∫cos^2 2xdx+sin2x+x)
=1/4[1/2∫(1+cos4x)dx+sin2x+x]
=1/32sin4x+1/4sin2x+3/8x+C
扩展资料:
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。