线性代数中,为什么r(AB)≤r?
1个回答
展开全部
AB,是m×n的矩阵,
设A的列向量中α(i1),α(i2),...,α(ir)是其中一个极大线性无关组
β(j1),β(j2),...,β(jt)是B的列向量的一个极大线性无关组。
那么A的每一个辩尺列向量均可以由α(i1),α(i2),...,α(ir)线性表出,
B的每一个列向量均可以用β(j1),β(j2),...,β(jt)线性表出。
于是
A+B的每一个列向量α(k)+β(k)都能用α(i1),α(i2),...,α(ir),β(j1),β(j2),...,β(jt)线性表出。
因携圆高此A+B列向量组中极大腔哪线性无关组的向量个数不大于α(i1),α(i2),...,
α(ir),β(j1),β(j2),...,β(jt)中的向量个数,
即r(A+B)≤r+t=r(A)+r(B)
设A的列向量中α(i1),α(i2),...,α(ir)是其中一个极大线性无关组
β(j1),β(j2),...,β(jt)是B的列向量的一个极大线性无关组。
那么A的每一个辩尺列向量均可以由α(i1),α(i2),...,α(ir)线性表出,
B的每一个列向量均可以用β(j1),β(j2),...,β(jt)线性表出。
于是
A+B的每一个列向量α(k)+β(k)都能用α(i1),α(i2),...,α(ir),β(j1),β(j2),...,β(jt)线性表出。
因携圆高此A+B列向量组中极大腔哪线性无关组的向量个数不大于α(i1),α(i2),...,
α(ir),β(j1),β(j2),...,β(jt)中的向量个数,
即r(A+B)≤r+t=r(A)+r(B)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询