y^2=-x与直线y=-x-2所围成的平面图形的面积?
2个回答
展开全部
这是向右开口的抛物线与直线围成的图形,先求交点:
y²=-x=y+2
y²-y-2=0
(y-2)(y+1)=0
y1=-1,y2=2
x=-y-2
x1=-y1-2=1-2=-1
x2=-y2-2=-4
沿y轴积分比较好做:
S=∫(-1,2)[(-y²)-(-y-2)]dy
=∫(-1,2)[-y²+y+2]dy
=(-y³/3+y²/2+2y)|(-1,2)
=(-1/3)[2³-(-1)³]+(1/2)[2²-(-1)²]+2[2-(-1)]
=(-1/3)x9+(1/2)x3+2x3
=-3+3/2+6
=3+3/2
=4.5
y²=-x=y+2
y²-y-2=0
(y-2)(y+1)=0
y1=-1,y2=2
x=-y-2
x1=-y1-2=1-2=-1
x2=-y2-2=-4
沿y轴积分比较好做:
S=∫(-1,2)[(-y²)-(-y-2)]dy
=∫(-1,2)[-y²+y+2]dy
=(-y³/3+y²/2+2y)|(-1,2)
=(-1/3)[2³-(-1)³]+(1/2)[2²-(-1)²]+2[2-(-1)]
=(-1/3)x9+(1/2)x3+2x3
=-3+3/2+6
=3+3/2
=4.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询