怎么判断一个四位数能被7、13、11整除?
1个回答
展开全部
能被7、13、11整除的特征(实际是一个方法)是这样的:
将一个多于4位的整数在百位与千位之间分为两截,形成两个数,左边的数原来的千位、万位成为个位、十位(依次类推)。
将这两个新数相减(较大的数减较小的数),所得的差不改变原来数能被7、11、13整除的特性。
这个方法可以连续使用,直到所得的差小于1000为止。
例如:判断71858332能否被7、11、13整除,这个数比较大,
将它分成71858、332两个数(右边是三位数)
71858-332=71526
再将71526分成71、526两个数(右边是三位数)
526-71=455
由于455数比原数小得多,
相对来说容易判断455能被7和13整除,不能被11整除,
所以原来的71858332能被7和13整除,不能被11整除。
将一个多于4位的整数在百位与千位之间分为两截,形成两个数,左边的数原来的千位、万位成为个位、十位(依次类推)。
将这两个新数相减(较大的数减较小的数),所得的差不改变原来数能被7、11、13整除的特性。
这个方法可以连续使用,直到所得的差小于1000为止。
例如:判断71858332能否被7、11、13整除,这个数比较大,
将它分成71858、332两个数(右边是三位数)
71858-332=71526
再将71526分成71、526两个数(右边是三位数)
526-71=455
由于455数比原数小得多,
相对来说容易判断455能被7和13整除,不能被11整除,
所以原来的71858332能被7和13整除,不能被11整除。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询