拟合程度怎么判断

 我来答
山海LUFo
2023-06-09 · 超过80用户采纳过TA的回答
知道小有建树答主
回答量:275
采纳率:100%
帮助的人:4.2万
展开全部

拟合程度判断方法有剩余平方和检验、卡方检验、回归误差检验法等。

1、剩余平方和检验。

是将利用预测的理论预测值与病害发生的实际情况(y)进行比较,求得它们的差异平方和(Q)、回归误差(S)及曲线相关比(r)的值,希望Q、S的值愈小愈好,曲线相关比(r)愈大愈好。

2、卡方检验。

卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。

3、回归误差检验法。

方程尾部的Sy除以x为方程的回归误差。在利用预测方程的回归误差进行预测效果的检验时,认为预测值落在2个回归误差的范围之内,就认为预测正确,回归误差是由建立预测方程的原始数据决定的,当原始数据的摆动范围愈大,所建方程的回归误差Sy除以x也就愈大。

拟合的分类:

1、拟合优度。

R2衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R2等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比。实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。

因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。拟合优度是一个统计术语,是衡量金融模型的预期值和现实所得的实际值的差距。

2、曲线拟合。

曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。最小二乘法是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式