量子纠缠的本质是什么
量子纠缠的本质是量子的关联性。
资料扩展:
在量子力学里,当几个粒子在彼此相互作用后,由于各个粒子所拥有的特性已综合成为整体性质,无法单独描述各个粒子的性质,只能描述整体系统的性质。
则称这现象为量子缠结或量子纠缠(quantum entanglement)。量子纠缠是一种纯粹发生于量子系统的现象;在经典力学里,找不到类似的现象。
量子纠缠与量子系统失序现象、量子信息丧失程度密切相关。量子纠缠越大,则子系统越失序,量子信息丧失越多。
反之,量子纠缠越小,子系统越有序,量子信息丧失越少。因此,冯诺伊曼熵可以用来定量地描述量子纠缠,另外,还有其它种度量也可以定量地描述量子纠缠。
假设一个量子系统是由几个处于量子纠缠的子系统组成,而整体系统所具有的某种物理性质,子系统不能私自具有,这时,不能够对子系统给定这种物理性质,只能对整体系统给定这种物理性质,它具有“不可分性”。
不可分性不一定与空间有关,处于同一区域的几个物理系统,只要彼此之间没有任何纠缠,则它们各自可拥有自己的物理性质。物理学者艾雪·佩雷斯(Asher Peres)给出不可分性的数学定义式,可以计算出整体系统到底具有可分性还是不可分性。
假设整体系统具有不可分性,并且这不可分性与空间无关,则可将它的几个子系统分离至两个相隔遥远的区域,这动作凸显出不可分性与定域性的不同──虽然几个子系统分别处于两个相隔遥远的区域,仍旧不可将它们个别处理。
在EPR佯谬里,由于两个粒子分别处于两个相隔遥远的区域,整体系统被认为具有可分性,但因量子纠缠,整体系统实际具有不可分性,整体系统所具有明确的自旋z分量,两个粒子各自都不具有。