极坐标公式是什么?
1个回答
展开全部
极坐标下弧微分公式
设函数f(x)在区间(a,b)内具有连续导数,在曲线Y=f(x)上取定点Mo(xo,f(xo))作为计算曲线弧长的基点,M(x,y)是曲线上任意一点。
规定:自变量x增大的方向为曲线的正向;当弧段MoM的方向与曲线正向一致时,M0M的弧长S>0;相反时,S<0。
扩展资料
当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。
平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。
对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ属于[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询