
设a为实常数,且f(x)=lg(2/(1-x)+a)是奇函数,解不等式f(x)<0
展开全部
f(x)是奇函数,则有f(0)=0
f(0)=lg(2/(1-0)+a)=lg(2+a)=0
所以2+a=1,a=-1
f(x)=lg[2/(1-x)-1]=lg[(1+x)/(1-x)]
f(x)<0即是
lg[(1+x)/(1-x)]<lg1
(1+x)/(1-x)<1
(1+x)/(1-x)-1<0
[(1+x)-(1-x)]/(1-x)<0
2x/(1-x)<0
2x(1-x)<0
2x(x-1)>0
x<0或x>1--(1)
因为对数函数的真数要大于0,所以满足
(1+x)/(1-x)>0
(1+x)(1-x)>0
-1<x<1--(2)
取(1)(2)的交集得:-1<x<0
f(0)=lg(2/(1-0)+a)=lg(2+a)=0
所以2+a=1,a=-1
f(x)=lg[2/(1-x)-1]=lg[(1+x)/(1-x)]
f(x)<0即是
lg[(1+x)/(1-x)]<lg1
(1+x)/(1-x)<1
(1+x)/(1-x)-1<0
[(1+x)-(1-x)]/(1-x)<0
2x/(1-x)<0
2x(1-x)<0
2x(x-1)>0
x<0或x>1--(1)
因为对数函数的真数要大于0,所以满足
(1+x)/(1-x)>0
(1+x)(1-x)>0
-1<x<1--(2)
取(1)(2)的交集得:-1<x<0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询