什么叫做辗转相除法?举几个例子
辗转相除法最大的用途就是用来求两个数的最大公约数。
用(a,b)来表示a和b的最大公约数。有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。 (证明过程请参考其它资料)
例:求 15750 与27216的最大公约数。
解:
∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)
∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284)
∵11466=4284×2+2898 ∴(11466,4284)=(4284,2898)
∵4284=2898×1+1386 ∴(4284,2898)=(2898,1386)
∵2898=1386×2+126 ∴(2898,1386)=(1386,126)
∵1386=126×11 ∴(1386,126)=126
所以(15750,27216)=216
辗转相除法比较适合用来求两个比较大的数的最大公约数 。
扩展资料;
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
另一种求两数的最大公约数的方法是更相减损法。
两个数的最大公约数是指能同时整除它们的最大正整数。
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:
用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
示例:
123456 和 7890 的最大公因数是 6,这可由下列步骤(其中,“a mod b”是指取 a ÷ b 的余数)看出:
另一种求两数的最大公约数的方法是更相减损法。
扩展资料:
更相减损法与辗转相除法:
1、两者都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
2、从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。
更相损减法在两数相差较大时,时间复杂度容易退化成O(N),而辗转相除法可以稳定在O(logN)。但辗转相除法需要试商,这就使得在某些情况下,使用更相损减法比使用辗转相除法更加简单。而stein算法便由此出现。
参考资料来源:百度百科——辗转相除法
用(a,b)来表示a和b的最大公约数。
有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。 (证明过程请参考其它资料)
例:求 15750 与27216的最大公约数。
解:
∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)
∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284)
∵11466=4284×2+2898 ∴(11466,4284)=(4284,2898)
∵4284=2898×1+1386 ∴(4284,2898)=(2898,1386)
∵2898=1386×2+126 ∴(2898,1386)=(1386,126)
∵1386=126×11 ∴(1386,126)=126
所以(15750,27216)=216
辗转相除法比较适合用来求两个比较大的数的最大公约数 。
用(a,b)来表示a和b的最大公约数。
有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。 (证明过程请参考其它资料)
例:求 15750 与27216的最大公约数。
解:
∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)
∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284)
∵11466=4284×2+2898 ∴(11466,4284)=(4284,2898)
∵4284=2898×1+1386 ∴(4284,2898)=(2898,1386)
∵2898=1386×2+126 ∴(2898,1386)=(1386,126)
∵1386=126×11 ∴(1386,126)=126
所以(15750,27216)=216
辗转相除法比较适合用来求两个比较大的数的最大公约数 。
用(a,b)来表示a和b的最大公约数。
有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。 (证明过程请参考其它资料)
例:求 15750 与27216的最大公约数。
解:
∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)
∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284)
∵11466=4284×2+2898 ∴(11466,4284)=(4284,2898)
∵4284=2898×1+1386 ∴(4284,2898)=(2898,1386)
∵2898=1386×2+126 ∴(2898,1386)=(1386,126)
∵1386=126×11 ∴(1386,126)=126
所以(15750,27216)=216
辗转相除法比较适合用来求两个比较大的数的最大公约数 。