设x,y为实数,且x^2+y^2=4则2xy/(x+y-2)的最小值是多少

fallsonata
2008-10-02 · TA获得超过9834个赞
知道小有建树答主
回答量:710
采纳率:100%
帮助的人:0
展开全部
解:由x^2+y^2=4变形为|x-0|^2+|y-0|^2=2^2很容易联想到以原点为圆心,半径为2的圆的解析式,没错就是它了。(PS:把纯代数问题转化为几何问题直观求解是种很重要的手段,像这种2元2次方程且只一个方程本是要涉及到大学隐函数问题的,将它转为几何问题使得求解变为可能。类似的,像把数轴上点的问题转化为距离或向量也类似)

下面详细求解:有圆的解析式为x^2+y^2=2^2,直线y=-x+2,要求2xy/(x+y-2)的最小值,也就是求圆x^2+y^2=2^2上点(x,y)且|x|=|y|到直线y=-x+2的最小距离,
易得:最小距离为2-√2,最大距离为2+√2,故2xy/(x+y-2)的最小值是2-√2
娟哆哆55
2008-10-02 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2219
采纳率:0%
帮助的人:3969万
展开全部
已知x²+y²=4,求2xy/(x+y-2)的最小值。

解:由于(x-y)²≥0,展开得:2xy≤x²+y²,则有:
x²+y²+2xy≤2(x²+y²)
(x+y)²≤2(x²+y²)=8
得:-2√2≤x+y≤2√2,
所以有:
2xy/(x+y-2)
=(x²+y²+2xy-4)/(x+y-2)
=[(x+y)²-4]/(x+y-2)
=(x+y+2)(x+y-2)/(x+y-2)
=x+y+2≥2-2√2
因此,2xy/(x+y-2)的最小值是2-2√2。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式