已知函数f(x)=x2+ax+3,当x属于[-2,2]时,f(x)大于等于a恒成立,求a的最小值 10

 我来答
JJJYYM
2012-05-07 · TA获得超过498个赞
知道答主
回答量:243
采纳率:0%
帮助的人:94.9万
展开全部
解:∵函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,
∴(x-1)a≥-x2-3,当x∈[-2,2]时恒成立,
①当x∈(1,2]时,
∴在x∈(1,4]恒成立
令 ,x∈(1,4]即a≥g(x)max
而 在x∈(1,4]上的最大值为:-6,
∴a≥-6;
②当x∈[-2,1)时,
∴在x∈[-2,1)恒成立
令 ,x∈[-2,1),
即a≤g(x)min
而 在∈[-2,1)上的最小值为2,
∴a≤2;
综上所述,实数a的取值范围:[-6,2].
最小值可知

望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式