若非0函数f(x)对任意实数a,b均有f(a+b)=f(a)+f(b),当x<0时f(x)>1

1)求证f(x)>02)求证f(x)为减函数3)当f(4)=1/16时.解不等式f(x-3)*f(5-x~2)≤1/4急...过程详细点..谢谢..... 1)求证 f(x)>0
2)求证 f(x)为减函数
3)当f(4)=1/16时.解不等式f(x-3)*f(5-x~2)≤1/4
急...过程详细点..谢谢..
展开
娟哆哆55
推荐于2016-12-02 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2219
采纳率:0%
帮助的人:3660万
展开全部
(1)求证:f(x)>0
既然 对任意实数a,b均有f(a+b)=f(a)·f(b),则有
f(a + a) = f(a) * f(a)
f(x) = [f(x/2)]^2 ≥ 0 恒成立。
如能进一步证明 对定义域任意x f(x) ≠ 0, 恒成立。则 f(x) > 0 成立。
采用反证法:
假设存在 x0, f(x0) = 0
那么对任意 x,f(x) = f(x - x0)*f(x0) = 0
这与 f(x) 为非0函数矛盾。因此 不存在 x0 ,使得 f(x0) = 0
综上所述:f(x) > 0
===============================================
(2)求证:f(x)为减函数
设 x2 > x1
f(x1) - f(x2)
= f(x1 - x2 + x2) - f(x2)
= f(x1 - x2)*f(x2) - f(x2)
= [f(x1 - x2) - 1]*f(x2)

x1 - x2 < 0 ,而已知 x<0 时, f(x) > 1。因此
f(x1 - x2) - 1 > 0
同时已知 f(x) 恒大于0。即 f(x2) > 0
因此
f(x1) - f(x2) = [f(x1-x2) -1]f(x2) > 0
即对定义域内任意 x2 > x1,恒有 f(x2) - f(x1) < 0
因此 f(x) 函数是 减函数
====================================================
(3)当f(4)=1/16 时,解不等式f(x-3)·f(5-x^2)≤1/4

f(4) = 1/16,所以
f(4) = f(2+2) = f(2)*f(2) = 1/16
根据 f(x) > 0 ,舍去 f(2) = -1/4
f(2) = 1/4

根据 f(a)*f(b) = f(a+b),则
f(x-3)*f(5-x^2) = f(2 + x - x^2) ≤ 1/4 = f(2)
根据 f(x) 是减函数,则
2 + x - x^2 ≥ 2
x^2 - x ≤ 0
x(x-1) ≤ 0
0 ≤ x ≤ 1
参考资料:实际上 ,底数 小于1 的指数型函数 恰好 满足f(x)的各种性质
zxy12317823
2008-10-03 · TA获得超过1万个赞
知道大有可为答主
回答量:1894
采纳率:100%
帮助的人:933万
展开全部
方法1(1)由f(a+b)=f(a).f(b),得f(2a)=[f(a)]^2,令x=2a,则f(x)>=0.
又f(x)是非零函数,所以f(x)>0
(2)f(x+a)=f(x)f(a),f(x)=f(x+a)/f(a)
当x<0时,有x+a<a,f(x)=f(x+a)/f(a)>1,即f(x+a)>f(a),所以,f(x)为减函数。
(3)f(x-3).f(5-x^2)=f(x-3+5-x^2)=f(-x^2+x+2)
原不等式化为:f(-x^2+x+2)≤1/4,两边平方,[f(-x^2+x+2)]^2≤1/16
f[2(-x^2+x+2)]≤1/16
因f(x)为减函数,f(4)=1/16,则有2(-x^2+x+2)>=4,-x^2+x>=0
解得:0≤x≤1

方法2.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1。
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0。因为是非零函数,所以对于任意x都有f(x)不等于0,所以f(x)>0。
3.设x1<x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1<x2,所以x1-x2<0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x)是R上的减函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式