
是否存在常数a,b,c,是等式1^2+2^2+3^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立? 5
展开全部
是否存在常数a,b,c,是等式1^2+2^2+3^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立?
存在!a=1/4,b=1/2,c=1/4.
分析如下因为要想x<=f(X)<=1/2*(1+x^2),对一切x∈R都成立,而y=x和y=1/2*(1+x^2)交于点(1,1)所以f(x)也必过(1,1)f(x)又经过(-1,0)
所以:a-b+c=0,a+b+c=1.解得b=1/2,a+c=1/2。带入不等式,
ax^2+1/2x+c>=x
+1/2x+c<=1/2*(1+x^2)
整理:ax^2-1/2x+c>=0
(1/2-a)x^2-1/2x+1/2-c>=0;
为使上式恒成立,(1/2)^2-4*a*c>=0
(1/2)^2-4*(1/2-a)*(1/2-c)>=0
整理得ac>=1/16
又因为a+c=1/2
得到唯一一组解a=1/4,b=1/4.
存在!a=1/4,b=1/2,c=1/4.
分析如下因为要想x<=f(X)<=1/2*(1+x^2),对一切x∈R都成立,而y=x和y=1/2*(1+x^2)交于点(1,1)所以f(x)也必过(1,1)f(x)又经过(-1,0)
所以:a-b+c=0,a+b+c=1.解得b=1/2,a+c=1/2。带入不等式,
ax^2+1/2x+c>=x
+1/2x+c<=1/2*(1+x^2)
整理:ax^2-1/2x+c>=0
(1/2-a)x^2-1/2x+1/2-c>=0;
为使上式恒成立,(1/2)^2-4*a*c>=0
(1/2)^2-4*(1/2-a)*(1/2-c)>=0
整理得ac>=1/16
又因为a+c=1/2
得到唯一一组解a=1/4,b=1/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询