设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点

写出必要的推导过程,麻烦您了,谢谢... 写出必要的推导过程,麻烦您了,谢谢 展开
a11250628
2006-05-10 · TA获得超过142个赞
知道答主
回答量:26
采纳率:0%
帮助的人:0
展开全部
设A(X1,Y1),B(X2,Y2)则 y1^2=2px1,y2^2=2px2
∠AOB=90
(y1*y2)/(x1*x2)=-1 即y1*y2=-4P^2
由直线AB得:y-y1=(y2-y1)/(x2-x1)*(x-x1)
即y-y1=2p/(y2+y1)*(x-x1)因为 y1^2=2px1,y2^2=2px2和y1*y2=-4P^2
故:(y2+y1)*y=2p*(x-2p)
所以直线AB过定点(2p,0)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式