一道高二数学题,在线等,大家帮帮忙!!!

求证:1*(n^2-1)+2*(n^2-2^2)+…+n(n^2-n^2)=0.25n^4-0.25n^2对一切正整数n都成立。要有过程谢谢... 求证:1*(n^2-1)+2*(n^2-2^2)+…+n(n^2-n^2)=0.25n^4-0.25n^2对一切正整数n都成立。

要有过程
谢谢
展开
danceshelly
2008-10-07 · 超过11用户采纳过TA的回答
知道答主
回答量:61
采纳率:0%
帮助的人:0
展开全部
用数学归纳法吧。
(1)当n=1时,左边=右边,等式显然成立。
(2)假设n=k时,等式成立,即1*(k^2-1)+2*(k^2-2^2)+…+k(k^2-k^2)=0.25k^4-0.25k^2,
那么,当n=k+1时,左边=1*((k+1)^2-1)+2*((k+1)^2-2^2)+…+(k+1)((k+1)^2-(k+1)^2)=[1*(k^2-1)+2*(k^2-2^2)+…+k(k^2-k^2)](2k+1)=(.25k^4-0.25k^2)(k+1)=0.25(k+1)^4-0.25(k+1)^2.
(3)综上,1*(n^2-1)+2*(n^2-2^2)+…+n(n^2-n^2)=0.25n^4-0.25n^2对一切正整数n都成立
百度网友1a59dd2dd
2008-10-07
知道答主
回答量:14
采纳率:0%
帮助的人:0
展开全部
这题硬算就好了- -
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式