已知F1 F2是椭圆x2/25+y2/16=1的两个焦点,P是椭圆上的一点,若△PF1F2的内切圆半径为1,则点P到x轴距离为

如题求教... 如题 求教 展开
gm非左非右
2014-03-27 · TA获得超过3038个赞
知道小有建树答主
回答量:430
采纳率:50%
帮助的人:386万
展开全部
楼主你好!
首先我们把这个三角形单拿出来,设内心为点A,然后三角形面积可以表示为三个三角形AF1F2、AF1P、AF2P面积的和,由于着三个三角形的高相同,都是内切圆半径,所以三角形PF1F2面积即为周长乘以内切圆半径除以2。
又因为PF1+PF2是恒定的,是长轴长,也就是10,因此周长恒定,是16
所以S△PF1F2=16×1÷2=8
P到x轴的距离为d,根据三角形面积公式,底边F1F2=6,那么 6d÷2=8
d=8/3

希望能帮助到您,望采纳,谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式