高考数列题,急求详细解答过程,谢谢
已知数列{an},an=n²+n,数列{1/an}的前n项和为Sn,数列{bn=n-33},n∈N*,则bnSn的最小值是祝您新年快乐,马到成功!修改一下,数列...
已知数列{an},an=n²+n,数列{1/an}的前n项和为Sn,数列{bn=n-33},n∈N*,则bnSn的最小值是
祝您新年快乐,马到成功!
修改一下,数列:{bn}的通项公式bn=n-33 展开
祝您新年快乐,马到成功!
修改一下,数列:{bn}的通项公式bn=n-33 展开
展开全部
an=n²+n=n(n+1)
1/an=1/[n(n+1)]=1/n -1/(n+1)
Sn=1/a1+1/a2+...+1/an=1/1-1/2+1/2-1/3+...+1/n-1/(n+1)=1- 1/(n+1)=n/(n+1)
bn=n-33 Sn=n/(n+1)
bnSn=(n-33)n/(n+1)
=(n²-33n)/(n+1)
=(n²+n-34n-34+34)/(n+1)
=[n(n+1)-34(n+1)+34]/(n+1)
=n +34/(n+1) -34
=(n+1)+34/(n+1) -35
由均值不等式得(n+1)+34/(n+1)≥2√34,当且仅当n=√34-1时取等号,又n为正整数,n=5时
(n+1)+34/(n+1)有最小值35/3,此时bnSn有最小值(bnSn)min=35/3 -35=-70/3
1/an=1/[n(n+1)]=1/n -1/(n+1)
Sn=1/a1+1/a2+...+1/an=1/1-1/2+1/2-1/3+...+1/n-1/(n+1)=1- 1/(n+1)=n/(n+1)
bn=n-33 Sn=n/(n+1)
bnSn=(n-33)n/(n+1)
=(n²-33n)/(n+1)
=(n²+n-34n-34+34)/(n+1)
=[n(n+1)-34(n+1)+34]/(n+1)
=n +34/(n+1) -34
=(n+1)+34/(n+1) -35
由均值不等式得(n+1)+34/(n+1)≥2√34,当且仅当n=√34-1时取等号,又n为正整数,n=5时
(n+1)+34/(n+1)有最小值35/3,此时bnSn有最小值(bnSn)min=35/3 -35=-70/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询