高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的扇形边界
2014-05-05
展开全部
L由y = √(a² - x²) 和 y = x 和 y = - x围成
参数化:t:- π/4 → π/4
x = acost,y = asint
dx = - asintdt,dy = acostdt
ds = adt
∫L (x + y)e^(x² + y²) ds
= ∫(- π/4,π/4) (acost + asint)e^a² adt
= a²e^a²∫(- π/4,π/4) (sint + cost) dt
= a²e^a² * 2[sint] |(0,π/4)
= √2a²e^a²
参数化:t:- π/4 → π/4
x = acost,y = asint
dx = - asintdt,dy = acostdt
ds = adt
∫L (x + y)e^(x² + y²) ds
= ∫(- π/4,π/4) (acost + asint)e^a² adt
= a²e^a²∫(- π/4,π/4) (sint + cost) dt
= a²e^a² * 2[sint] |(0,π/4)
= √2a²e^a²
追问
答案是1\√2[e^(a^2)-1]+√2a^2e^(a^2)
追答
算漏了两条线- -
y = x,dy = dx
∫L (x + y)e^(x² + y²) ds
= ∫(0,a/√2) 2xe^(2x²)√(1 + 1) dx
= 1/√2 * (e^a² - 1)
y = - x,dy = - dx
∫L (x + y)e^(x² + y²) ds
= ∫L (x - x)e^(2x²)√(1 + 1) dx
= 0
都加起就好了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询