初三数学题求大神解答 5
展开全部
1、证明:连接CE
∵直径BC
∴∠BEC=90
∴∠ACE+∠CME=90
∵AD⊥BE
∴∠CAD+∠AMB=90
∵∠CME=∠ANB
∴∠ACE=∠CAD
∵∠ACE、∠FBE所对应圆弧都为劣弧EF
∴∠ACE=∠FBE
∴∠FBE=∠CAD
∵E为弧CF的中点
∴弧EF=弧CE
∴∠FBE=∠CBE
∴∠CBE=∠CAD
∵AD平分∠BAC
∴∠CAD=∠BAD
∴∠CBE=∠BAD
∵AD⊥BE
∴∠BAD+∠ABE=90
∴∠CBE+∠ABE=90
∴AB⊥BC
∴AB是圆O的切线
2、解
∵AB⊥BC,AB=3,BC=4
∴AC=√(AB²+BC²)=√(9+16)=5
∵AD平分∠BAC
∴AB/BD=AC/CD
∴AB/BD=AC/(BC-BD)
∴3/BD=5/(4-BD)
∴BD=3/2
∴AD=√(AB²+BD²)=√(9+9/4)=3√5/2
∵∠CBE=∠BAD,AB⊥BC,∠BEC=90
∴△ABD相似于△BEC
∴BE/BC=AB/AD
∴BE/4=3/(3√5/2)
∴BE=8√5/5
有问题欢迎追问,如果满意请点击采纳!
∵直径BC
∴∠BEC=90
∴∠ACE+∠CME=90
∵AD⊥BE
∴∠CAD+∠AMB=90
∵∠CME=∠ANB
∴∠ACE=∠CAD
∵∠ACE、∠FBE所对应圆弧都为劣弧EF
∴∠ACE=∠FBE
∴∠FBE=∠CAD
∵E为弧CF的中点
∴弧EF=弧CE
∴∠FBE=∠CBE
∴∠CBE=∠CAD
∵AD平分∠BAC
∴∠CAD=∠BAD
∴∠CBE=∠BAD
∵AD⊥BE
∴∠BAD+∠ABE=90
∴∠CBE+∠ABE=90
∴AB⊥BC
∴AB是圆O的切线
2、解
∵AB⊥BC,AB=3,BC=4
∴AC=√(AB²+BC²)=√(9+16)=5
∵AD平分∠BAC
∴AB/BD=AC/CD
∴AB/BD=AC/(BC-BD)
∴3/BD=5/(4-BD)
∴BD=3/2
∴AD=√(AB²+BD²)=√(9+9/4)=3√5/2
∵∠CBE=∠BAD,AB⊥BC,∠BEC=90
∴△ABD相似于△BEC
∴BE/BC=AB/AD
∴BE/4=3/(3√5/2)
∴BE=8√5/5
有问题欢迎追问,如果满意请点击采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询