数学求解答,要完整步骤,求学霸大神老师谢谢!
1个回答
展开全部
(1)
证明:
∵⊿ABC为等腰直角三角形
∴∠B=∠C=45º
∴∠CPF+∠CFP=180º-∠C=135º
∵∠BBE+∠CPF=180º-∠EPF=135º
∴∠BPE=∠CFP
∴⊿PBE∽⊿CFP(AA‘)
(2)
探究1:△BPE与△CFP还相似
∵∠CPF+∠CFP=∠BBE+∠CPF
探究2:,△BPE与△EFP不相似
连接AP,∵AP是中线,根据三线合一,AP⊥BC
∴∠BPA=90º
∠BPE=90º+∠APE
∵⊿EFP是等腰直角三角形
∠PEF=90º
∴∠BPE是钝角>∠PEF
∴△BPE与△EFP不相似
证明:
∵⊿ABC为等腰直角三角形
∴∠B=∠C=45º
∴∠CPF+∠CFP=180º-∠C=135º
∵∠BBE+∠CPF=180º-∠EPF=135º
∴∠BPE=∠CFP
∴⊿PBE∽⊿CFP(AA‘)
(2)
探究1:△BPE与△CFP还相似
∵∠CPF+∠CFP=∠BBE+∠CPF
探究2:,△BPE与△EFP不相似
连接AP,∵AP是中线,根据三线合一,AP⊥BC
∴∠BPA=90º
∠BPE=90º+∠APE
∵⊿EFP是等腰直角三角形
∠PEF=90º
∴∠BPE是钝角>∠PEF
∴△BPE与△EFP不相似
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询