初一数学不等式
1个回答
展开全部
解:(1)根据题意得4x+5y+6(40-x-y)=200,整理得y=-2x+40,则y与x的函数关系式为y=-2x+40;
(2)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,装运C种西瓜的车辆数为z辆,则x+y+z=40,
∵x+y+z=40y=−2x+40,
∴z=x,
∵x≥10,y≥10,z≥10,
∴有以下6种方案:
①x=z=10,y=20;装运A种西瓜的车辆数为10辆,装运B种西瓜的车辆数20辆,装运C种西瓜的车辆数为10辆;
②x=z=11,y=18;装运A种西瓜的车辆数为11辆,装运B种西瓜的车辆数为18辆,装运C种西瓜的车辆数为11辆;
③x=z=12,y=16;装运A种西瓜的车辆数为12辆,装运B种西瓜的车辆数为16辆,装运C种西瓜的车辆数为12辆;
④x=z=13,y=14;装运A种西瓜的车辆数为13辆,装运B种西瓜的车辆数为14辆,装运C种西瓜的车辆数为13辆;
⑤x=z=14,y=12;装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
⑥x=z=15,y=10;装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆;
(3)由题意得:1600×4x+1000×5y+1200×6z≥250000,
将y=-2x+40,z=x,代入得3600x+200000≥250000,解得x≥1389,
经计算当x=z=14,y=12;获利=250400元;
当x=z=15,y=10;获利=254000元;
故装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
或装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆.
(2)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,装运C种西瓜的车辆数为z辆,则x+y+z=40,
∵x+y+z=40y=−2x+40,
∴z=x,
∵x≥10,y≥10,z≥10,
∴有以下6种方案:
①x=z=10,y=20;装运A种西瓜的车辆数为10辆,装运B种西瓜的车辆数20辆,装运C种西瓜的车辆数为10辆;
②x=z=11,y=18;装运A种西瓜的车辆数为11辆,装运B种西瓜的车辆数为18辆,装运C种西瓜的车辆数为11辆;
③x=z=12,y=16;装运A种西瓜的车辆数为12辆,装运B种西瓜的车辆数为16辆,装运C种西瓜的车辆数为12辆;
④x=z=13,y=14;装运A种西瓜的车辆数为13辆,装运B种西瓜的车辆数为14辆,装运C种西瓜的车辆数为13辆;
⑤x=z=14,y=12;装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
⑥x=z=15,y=10;装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆;
(3)由题意得:1600×4x+1000×5y+1200×6z≥250000,
将y=-2x+40,z=x,代入得3600x+200000≥250000,解得x≥1389,
经计算当x=z=14,y=12;获利=250400元;
当x=z=15,y=10;获利=254000元;
故装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
或装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |