展开全部
z = arccos√ (1-x^2)
cosz =√ (1-x^2)
-(sinz) dz/dx = x/√ (1-x^2)
dz/dx = -[x/√ (1-x^2)] [1/√( 1- (cosz)^2)]
= -[x/√ (1-x^2)] {1/√[ 1-(√ (1-x^2) )^2 ] }
=-[x/√ (1-x^2)] (1/x )
log<5>22 是一个常数
(log<5>22)' =0
cosz =√ (1-x^2)
-(sinz) dz/dx = x/√ (1-x^2)
dz/dx = -[x/√ (1-x^2)] [1/√( 1- (cosz)^2)]
= -[x/√ (1-x^2)] {1/√[ 1-(√ (1-x^2) )^2 ] }
=-[x/√ (1-x^2)] (1/x )
log<5>22 是一个常数
(log<5>22)' =0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询