请学霸帮帮忙

 我来答
tyq1997
2014-07-15 · TA获得超过11.1万个赞
知道大有可为答主
回答量:2.4万
采纳率:94%
帮助的人:2939万
展开全部

分析:(1)根据正方形的性质求出△ADP是等腰直角三角形,再判断出△AOD是等腰直角三角形,再求出四边形AODP是正方形,然后根据正方形的性质求出AP=DP=2根号2 ,写出点D的坐标即可;

(2)过点P作PM⊥x轴于点M,PN⊥y轴于点N,根据正方形的对角线互相平分且相等可得PD=PA,再根据同角的余角相等求出∠1=∠2,然后利用“角角边”证明△DPN和△APM全等,根据全等三角形对应边相等可得PM=PN,然后利用到角的两边距离相等的点在角的平分线上证明即可;
(3)根据垂线段最短,A、O重合时,点P到y轴的距离最小,为正方形ABCD边长的一半,OA=OD时点P到y轴的距离最大,为PD的长度,即可得解.


(1)解:∵四边形ABCD为正方形,
∴△ADP是等腰直角三角形,
又∵OA=OD,
∴△AOD是等腰直角三角形,
∴四边形AODP是正方形,
∵正方形ABCD的边长为4,
∴AC=BD=根号(4^2+4^2)=4根号2,

∴AP=DP=1/2×4根号2=2根号2 ,

∴点D的坐标为(0,2根号2 ),∠POA=45°;


(2)证明:如图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,
∵四边形ABCD是正方形,
∴PD=PA,∠DPA=90°,
∵PM⊥x轴于点M,PN⊥y轴于点N,
∴∠PMO=∠PNO=∠PND=90°,
∵∠NOM=90°,
∴四边形NOMP中,∠NPM=90°,
∴∠DPA=∠NPM,
∵∠1=∠DPA-∠NPA,∠2=∠NPM-∠NPA,
∴∠1=∠2,
∵在△DPN和△APM中,

∠PND=∠PMA    

∠1=∠2    

PD=PA    

 ∴△DPN≌△APM(AAS),
∴PN=PM,
∴OP平分∠DOA;

(3)解:当A、O重合时,点P到y轴的距离最小,
d=1/2 ×4=2,

当OA=OD时,点P到y轴的距离最大,d=PD=2根号2 ,

∵点A,D都不与原点重合,
∴2<d≤2根号2  .

 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式