如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线

如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明:以O、A... 如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求FG FC 的值. 展开
 我来答
剑舞雄风n1眚B
2014-08-21 · 超过74用户采纳过TA的回答
知道答主
回答量:182
采纳率:0%
帮助的人:68.4万
展开全部
(1)(2)见解析(3)

(1)证明:∵AB是⊙O的直径,
∴∠BCA=90°,
∴∠ABC+∠BAC=90°,
又∵∠CBD=∠BA,
∴∠ABC+∠CBD=90°,
∴∠ABD=90°,
∴OB⊥BD,
∴BD为⊙O的切线;
(2)证明:连CE、OC,BE,如图,
∵OE=ED,∠OBD=90°,

∴BE=OE=ED,
∴△OBE为等边三角形,
∴∠BOE=60°,
又∵AC∥OD,
∴∠OAC=60°,
又∵OA=OC,
∴AC=OA=OE,
∴AC∥OE且AC=OE,
∴四边形OACE是平行四边形,
而OA=OE,
∴四边形OACE是菱形;
(3)解:∵CF⊥AB,
∴∠AFC=∠OBD=90°,
而AC∥OD,
∴∠CAF=∠DOB,
∴Rt△AFC∽Rt△OBD,
,即
又∵FG∥BD,
∴△AFG∽△ABD,
,即


(1)由AB是⊙O的直径,根据直径所对的圆周角为直角得到∠BCA=90°,则∠ABC+∠BAC=90°,而∠CBD=∠BA,得到∠ABC+∠CBD=90°,即OB⊥BD,根据切线的判定定理即可得到BD为⊙O的切线;
(2)连CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则△OBE为等边三角形,于是∠BOE=60°,又因为AC∥OD,则∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形;
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而AC∥OD,则∠CAF=∠DOB,根据相似三角形的判定易得Rt△AFC∽Rt△OBD,则有  ,即 ,再由FG∥BD易证得△AFG∽△ABD,则 ,即  ,然后求FC与FG的比即可一个定值.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式