设x,y为实数,若4x^2+y^2+xy=1则2x+y的最大值是多少

 我来答
99v
高粉答主

2015-02-28 · 关注我不会让你失望
知道顶级答主
回答量:3.5万
采纳率:97%
帮助的人:1.6亿
展开全部
设x y为实数 若4x^2+y^2+xy=1 则2x+y的最大值

∵4x²+y²+xy=1
∴4x²+y²+4xy-3xy=1
(2x+y)²-3xy=1
(2x+y)² = 1 + 3xy

∵4x²+y² ≥ 2*2x*y = 4xy,
∴1-xy ≥4xy → xy ≤ 1/5

∴ (2x+y)^2 = 1 + 3xy ≤ 1+ 3/5 = 8/5
x+y ≤ √(8/5)
2x+y的最大值 √(8/5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式