如图,已知△ABC,以BC为直径,点O为圆心的半圆交AC于点F.点E为CF的中点,连接BE交AC于点M,AD为△BAC的
如图,已知△ABC,以BC为直径,点O为圆心的半圆交AC于点F.点E为CF的中点,连接BE交AC于点M,AD为△BAC的角平分线,且AD⊥BE,垂足为点H.(1)求证:△...
如图,已知△ABC,以BC为直径,点O为圆心的半圆交AC于点F.点E为CF的中点,连接BE交AC于点M,AD为△BAC的角平分线,且AD⊥BE,垂足为点H.(1)求证:△CME∽△BCE;(2)求证:AB是圆O的切线;(3)若AB=3,BC=4,求证:BE=2CE.
展开
1个回答
展开全部
(1)证明:∵E为
的中点,
∴∠6=∠7,
又∵∠BEC=∠CEM=90°
∴△CME∽△BCE;
(2)证明:连接EC,
∵AD⊥BE于H,∠1=∠2,
∴∠3=∠4
∵∠4=∠5,
∴∠4=∠5=∠3,
又∵E为
的中点,
∴∠6=∠7,
∵BC是直径,
∴∠E=90°,
∴∠5+∠6=90°,
又∵∠AHM=∠E=90°,
∴AD∥CE,
∴∠2=∠6=∠1,
∴∠3+∠7=90°,
又∵BC是直径,
∴AB是半圆O的切线;
(3)解:∵AB=3,BC=4,
由(1)知,∠ABC=90°,
∴AC=5
在△ABM中,AD⊥BM于H,AD平分∠BAC,
∴AM=AB=3,
∴CM=2
∵∠6=∠7,∠E为公共角,
∴△CME∽△BCE,
得
=
=
=
,
∴EB=2EC.
CF |
∴∠6=∠7,
又∵∠BEC=∠CEM=90°
∴△CME∽△BCE;
(2)证明:连接EC,
∵AD⊥BE于H,∠1=∠2,
∴∠3=∠4
∵∠4=∠5,
∴∠4=∠5=∠3,
又∵E为
CF |
∴∠6=∠7,
∵BC是直径,
∴∠E=90°,
∴∠5+∠6=90°,
又∵∠AHM=∠E=90°,
∴AD∥CE,
∴∠2=∠6=∠1,
∴∠3+∠7=90°,
又∵BC是直径,
∴AB是半圆O的切线;
(3)解:∵AB=3,BC=4,
由(1)知,∠ABC=90°,
∴AC=5
在△ABM中,AD⊥BM于H,AD平分∠BAC,
∴AM=AB=3,
∴CM=2
∵∠6=∠7,∠E为公共角,
∴△CME∽△BCE,
得
EC |
EB |
MC |
BC |
2 |
4 |
1 |
2 |
∴EB=2EC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询