在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交

在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx... 在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=31010.(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 展开
 我来答
哔烧涂大哈6698
2014-08-14 · 超过64用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:174万
展开全部
解答:解:(1)∵直线MC的函数表达式y=kx-3.
∴点C(0,-3)
∴cos∠BCO=
|OC|
|BC|
3
10
10
=
3
10

∴可设|OC|=3t(t>0),|BC|=
10
t
则由勾股定理,得|OB|=t
而|OC|=3t=3,
∴t=1
∴|OB|=1,
∴点B(1,0)
∵点B(1,0)C(0,-3)在抛物线上
4a+c=0
a+c=?3

解得
a=1
c=?4

∴抛物线的函数表达式为y=(x+1)2-4=x2+2x-3.

(2)假设在抛物线上存在异于点C的点P,使以N,P,C为顶点的三角形是以NC为一条直角边的直角三角形,
①若PN为另一条直角边
∵点M(-1,-4)在直线MC上,
∴-4=-k-3,即k=1
∴直线MC的函数表达式为y=x-3
易得直线MC与x轴的交点N的坐标为N(3,0)
∵|OC|=|ON|
∴∠CNO=45°
∴在y轴上取点D(0,3),
连接ND交抛物线于点P
∵|ON|=|OD|
∴∠DNO=45°
设直线ND的函数表达式为y=mx+n
3m+n=0
n=3

m=?1
n=3

∴直线ND的函数表达式为y=-x+3
设点P(x,-x+3),代入抛物线的函数表达式,
得-x+3=x2+2x-3,
即x2+3x-6=0
解得x1=
?3+
33
2
,x2=
?3?
33
2

∴y1=
9?
33
2
,y2=
9+
33
2

∴满足条件的点为P1
?3+
33
2
9?
33
2
),p2
?3?
33
2
9+
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消