已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),求证:(1)对角

已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),求证:(1)对角线AC、BD是异面直线;(2)直线EF和HG必交于一点,... 已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),求证:(1)对角线AC、BD是异面直线;(2)直线EF和HG必交于一点,且交点在AC上. 展开
 我来答
nuNK900
推荐于2017-12-16 · 超过64用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:123万
展开全部
证明:(1)假设对角线AC、BD在同一平面α内,
则A、B、C、D都在平面α内,这与ABCD是空间四边形矛盾,
∴AC、BD是异面直线.
(2)∵E、H分别是AB、AD的中点,∴EH
.
1
2
BD.
又F、G分别是BC、DC的三等分点,
∴FG
.
2
3
BD.∴EH FG,且EH<FG.
∴FE与GH相交.
设交点为O,又O在GH上,GH在平面ADC内,∴O在平面ADC内.
同理,O在平面ABC内.
从而O在平面ADC与平面ABC的交线AC上.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式