
数列{an}满足a1=2,an+1=pan+2n(n∈N*),其中p为常数.若实数p使得数列{an}为等差数列或等比数列,数列
数列{an}满足a1=2,an+1=pan+2n(n∈N*),其中p为常数.若实数p使得数列{an}为等差数列或等比数列,数列{an}的前n项和为Sn,则满足Sn>201...
数列{an}满足a1=2,an+1=pan+2n(n∈N*),其中p为常数.若实数p使得数列{an}为等差数列或等比数列,数列{an}的前n项和为Sn,则满足Sn>2014的最小正整数n的值为______.
展开
展开全部
∵a1=2,an+1=pan+2n(n∈N*),
∴a2=pa1+2=2p+2,
a3=pa2+22=p(2p+2)+4=2p2+2p+4;
①若数列{an}为等差数列,则2a2=a1+a3,即2(2p+2)=2+2p2+2p+4=2p2+2p+6,
整理得:p2-p+1=(p?
)2+
=0,此方程无实数解,故数列{an}不可能为等差数列;
②若数列{an}为等比数列,则a22=a1?a3,即(2p+2)2=2(2p2+2p+4),
解得:p=1.
∴an+1=an+2n,
∴an=an-1+2n-1=an-2+2n-2+2n-1=…=2+21+22+…+2n-1=2+
=2n,
∴Sn=a1+a2+…+an=21+22+…+2n=
=2n+1-2,
∵S10=211-2=2048-2=2046>2014,S9=210-2=1024-2=1022<2014,
∴满足Sn>2014的最小正整数n的值为10,
故答案为:10.
∴a2=pa1+2=2p+2,
a3=pa2+22=p(2p+2)+4=2p2+2p+4;
①若数列{an}为等差数列,则2a2=a1+a3,即2(2p+2)=2+2p2+2p+4=2p2+2p+6,
整理得:p2-p+1=(p?
1 |
2 |
3 |
4 |
②若数列{an}为等比数列,则a22=a1?a3,即(2p+2)2=2(2p2+2p+4),
解得:p=1.
∴an+1=an+2n,
∴an=an-1+2n-1=an-2+2n-2+2n-1=…=2+21+22+…+2n-1=2+
2(1?2n?1) |
1?2 |
∴Sn=a1+a2+…+an=21+22+…+2n=
2(1?2n) |
1?2 |
∵S10=211-2=2048-2=2046>2014,S9=210-2=1024-2=1022<2014,
∴满足Sn>2014的最小正整数n的值为10,
故答案为:10.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询