关于数学的问题、标题要长长长长长长长长长长长长长长。。。。。。
就是初二的全等三角形那一部分、啥时候角角边啊、啥时候边边边啊、啥时候做辅助线啊、我都有些乱、分不清楚、求大神梳理一下、...
就是初二的全等三角形那一部分、啥时候角角边啊、啥时候边边边啊、啥时候做辅助线啊、我都有些乱、分不清楚、求大神梳理一下、
展开
1个回答
展开全部
三角形全等的判定
一、全等形
1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。
2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。
二、全等多边形
1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、性质:
(1)全等多边形的对应边相等,对应角相等。
(2)全等多边形的面积相等。
三、全等三角形
1、全等符号:"≌"。如图,不是为:△ABC≌△A′B′C′。读作:三角形ABC全等于三角形A′B′C′。
2、全等三角形的判定定理:
(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,"边角边");
(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,"角边角")
(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,"角角边")
(4)有三边对应相等的两三角形全等。(即SSS,"边边边")
(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,"斜边直角边")
3、全等三角形的性质:
(1)全等三角形的对应边相等、对应角相等;
(2)全等三角形的周长相等、面积相等;
(3)全等三角形对应边上的中线、高,对应角的平分线都相等。
4、全等三角形的作用:
(1)用于直接证明线段相等,角相等。
(2)用于证明直线的平行关系、垂直关系等。
(3)用于测量人不能的到达的路程的长短等。
(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。
(5)用于解决有关等积等问题。
4
尺规作图
一、定义:在几何中,把限定用直尺(无刻度)和圆规作图的方法,称为尺规作图。最基本最常用的尺规作图,称为基本作图。
二、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知角的平分线;
4、经过一点作已知直线的垂线;
5、作已知线段的中垂线。
三、几何作图题:一般由基本作图构成,所以作图时,先分析是由那些基本作图构成再作。
一、全等形
1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。
2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。
二、全等多边形
1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、性质:
(1)全等多边形的对应边相等,对应角相等。
(2)全等多边形的面积相等。
三、全等三角形
1、全等符号:"≌"。如图,不是为:△ABC≌△A′B′C′。读作:三角形ABC全等于三角形A′B′C′。
2、全等三角形的判定定理:
(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,"边角边");
(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,"角边角")
(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,"角角边")
(4)有三边对应相等的两三角形全等。(即SSS,"边边边")
(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,"斜边直角边")
3、全等三角形的性质:
(1)全等三角形的对应边相等、对应角相等;
(2)全等三角形的周长相等、面积相等;
(3)全等三角形对应边上的中线、高,对应角的平分线都相等。
4、全等三角形的作用:
(1)用于直接证明线段相等,角相等。
(2)用于证明直线的平行关系、垂直关系等。
(3)用于测量人不能的到达的路程的长短等。
(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。
(5)用于解决有关等积等问题。
4
尺规作图
一、定义:在几何中,把限定用直尺(无刻度)和圆规作图的方法,称为尺规作图。最基本最常用的尺规作图,称为基本作图。
二、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知角的平分线;
4、经过一点作已知直线的垂线;
5、作已知线段的中垂线。
三、几何作图题:一般由基本作图构成,所以作图时,先分析是由那些基本作图构成再作。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询