(2012?西城区二模)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的
(2012?西城区二模)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:...
(2012?西城区二模)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=33,求CD的长.
展开
1个回答
展开全部
(1)证明:连接AO,AC(如图).
∵BC是⊙O的直径,
∴∠BAC=∠CAD=90°.
∵E是CD的中点,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切线,
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.
∴OA⊥AP.
∵A是⊙O上一点,
∴AP是⊙O的切线;
(2)解:由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
∴sinP=
=
.
∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=3
,∠ACO=60°,
∴AC=
=
=3.
又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°-∠ACO=30°,
∴CD=
=
=2
.
∵BC是⊙O的直径,
∴∠BAC=∠CAD=90°.
∵E是CD的中点,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切线,
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.
∴OA⊥AP.
∵A是⊙O上一点,
∴AP是⊙O的切线;
(2)解:由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
∴sinP=
OA |
OP |
1 |
2 |
∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=3
3 |
∴AC=
AB |
tan∠ACO |
3
| ||
tan60° |
又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°-∠ACO=30°,
∴CD=
AC |
cos∠ACD |
3 |
cos30° |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询