![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如
如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会...
如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会改变吗?请你将图2中的图形补画完整并说明理由.
展开
1个回答
展开全部
(1)如图1,△CPQ是等边三角形.理由如下:
∵△ABC和△CDE都是等边三角形,
∴∠C=60°,AC=BC,DC=EC,
∴AC-DC=BC-EC,即AD=BE.
∵P、Q分别为AD、BE的中点,
∴PD=EQ,
∴CD+DP=CE+EQ,即CP=CQ,
∴△CPQ是等边三角形;
(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状不会改变.理由如下:
如图2,∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∵∠ACD=∠DCE-∠ACE,∠BCE=∠ACB-∠ACE,
∴∠ACD=∠BCE,
∴在△ACD与△BCE中,
,
∴△ACD≌△BCE (SAS),
∴AD=BE,∠CAD=∠CBE,即∠CAP=∠CBQ.
∵P是AD的中点,Q是BE的中点,
∴AP=
AD,BQ=
BE,
∴AP=BQ,
∴在△ACP与△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴PC=QC,∠BCQ=∠ACP,
∵∠BCQ+∠ACQ=∠ACB=60°,
∴∠ACP+∠ACQ=60°,
∴∠PCQ=60°,
∴△CPQ是等边三角形.
∵△ABC和△CDE都是等边三角形,
∴∠C=60°,AC=BC,DC=EC,
∴AC-DC=BC-EC,即AD=BE.
∵P、Q分别为AD、BE的中点,
∴PD=EQ,
∴CD+DP=CE+EQ,即CP=CQ,
(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状不会改变.理由如下:
如图2,∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∵∠ACD=∠DCE-∠ACE,∠BCE=∠ACB-∠ACE,
∴∠ACD=∠BCE,
∴在△ACD与△BCE中,
|
∴△ACD≌△BCE (SAS),
∴AD=BE,∠CAD=∠CBE,即∠CAP=∠CBQ.
∵P是AD的中点,Q是BE的中点,
∴AP=
1 |
2 |
1 |
2 |
∴AP=BQ,
∴在△ACP与△BCQ中,
|
∴△ACP≌△BCQ(SAS),
∴PC=QC,∠BCQ=∠ACP,
∵∠BCQ+∠ACQ=∠ACB=60°,
∴∠ACP+∠ACQ=60°,
∴∠PCQ=60°,
∴△CPQ是等边三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |