如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如

如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会... 如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会改变吗?请你将图2中的图形补画完整并说明理由. 展开
 我来答
弥淇和4192
2015-01-14 · TA获得超过140个赞
知道答主
回答量:177
采纳率:0%
帮助的人:119万
展开全部
(1)如图1,△CPQ是等边三角形.理由如下:
∵△ABC和△CDE都是等边三角形,
∴∠C=60°,AC=BC,DC=EC,
∴AC-DC=BC-EC,即AD=BE.
∵P、Q分别为AD、BE的中点,
∴PD=EQ,
∴CD+DP=CE+EQ,即CP=CQ,
∴△CPQ是等边三角形;

(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状不会改变.理由如下:
如图2,∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∵∠ACD=∠DCE-∠ACE,∠BCE=∠ACB-∠ACE,
∴∠ACD=∠BCE,
∴在△ACD与△BCE中,
AC=BC
∠ACD=∠BCE
DC=EC

∴△ACD≌△BCE (SAS),
∴AD=BE,∠CAD=∠CBE,即∠CAP=∠CBQ.
∵P是AD的中点,Q是BE的中点,
∴AP=
1
2
AD,BQ=
1
2
BE,
∴AP=BQ,
∴在△ACP与△BCQ中,
 
AC=BC
∠CAP=∠CBQ
AP=BQ

∴△ACP≌△BCQ(SAS),
∴PC=QC,∠BCQ=∠ACP,
∵∠BCQ+∠ACQ=∠ACB=60°,
∴∠ACP+∠ACQ=60°,
∴∠PCQ=60°,
∴△CPQ是等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式