数学是怎么产生的,它的发展历史是什么
产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题
数学的发展史大致可以分为四个时期。
1、第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
2、第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、第三时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
4、第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
扩展资料:
发展过程中研究出的数学成果:
1、李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。
2、华氏定理
华氏定理是我国著名数学家华罗庚的研究成果。 华氏定理为:体的半自同构必是自同构自同体或反同体。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
参考资料来源:百度百科-数学
2017-03-24 · 知道合伙人教育行家
数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节 发展历史
一般认为,从远古到现在,数学经历了五个历史阶段.
一、数学萌芽时期(公元6世纪以前)
在人类历史上,这是原始社会和奴隶社会的初期。这个时期数学的成就以巴比伦、埃及和中国的数学为代表。古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。春秋战国之际,筹算已普遍应用,其记数法是十进位值制。数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
在这个历史时期,由于生产水平很低,商品生产极其有限,社会实践对数学
的要求不高.因此只是在长期实践中逐渐形成了数的概念,初步掌握了数的运算方法,积累了几何学的一些知识.但这些知识是片断的、零碎的,没有形成体系,缺少逻辑因素,没有命题的证明.数学这门学科的最显著的特点之一的演绎推理和公理法在这个时期没有出现.
二、初等数学时期(从公元前5世纪到公元17世纪)
在人类历史上,这是发达的奴隶社会和整个封建社会时期.这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国.这时期的中国数学独立发展,在许多方面居世界领先地位.在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段.如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美.这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科.这个时期的研究内容是常量和不变的图形,因此又称为常量数学。
从公元前6世纪到公元前3世纪是希腊数学的古典时期.这段时期,古希腊形成了很多学派,广泛探讨哲学和自然科学问题,促进了数学理论的建立.在数学方面主要在初等几何取得了辉煌的成就,不仅创造了逻辑推理的演绎方法,而且使几何形成系统的理论.在数的研究方面,使算术应用过渡到理论讨论,建立了整除性理论,产生了数论。数学成就的精华是欧几里得的《几何原本》和阿波罗尼斯的《圆锥曲线论》。希腊数学的第二个时期.即亚历山大里亚时期的数学特点是基础研究与应用紧密结合,几何学开始了定量的研究,阿基米德求面积与体积的计算接近于微积分的计算方法。丢番图发展了巴比伦的代数,采用了一整套符号,使代数发展到一个新阶段。
从9世纪开始,外国数学发展的中心转向了阿拉伯和中亚细亚地区.阿拉伯数学起着承前启后的作用,阿拉伯人大量搜集、翻译古希腊的著作,并把这些著作及印度数码、计数法及中国的四大发明(火药、印刷术、指南针和造纸术)传到欧洲.他们发展了代数,建立了解方程的方法,得到一元二次方程的求根公式,并把三角学发展成一门独立的系统的学科。1427年伊朗数学家阿尔·卡西求得圆周率的17位准确值。
数学分支学科众多,内容浩如烟海,想用三、四万字的篇幅和通俗的语言,比较全面地介绍几千年来的数学发展与成就是非常困难的。