对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]?D,使得任取x1∈[a,b],都有f(x1)=c(c
对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]?D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2?[a,b]时...
对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]?D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2?[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|?f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;(3)若F(x)=mx+x2+2x+n,x∈[-2,+∞)是“平底型”函数,求m和n的值.
展开
1个回答
展开全部
(1)f1(x)=|x-1|+|x-2|是“平底型”函数,
存在区间[1,2]使得f1(x)=1,在区间[1,2]外,f1(x)>1,
f2(x)=x+|x-2|不是“平底型”函数,
∵在(-∞,0]上,f2(x)=2,在(-∞,0]外,f2(x)>2,(-∞,0]不是闭区间.
(2)若|t-k|+|t+k|≥|k|?f(x),(k∈R,k≠0)对一切t∈R恒成立
即 f(x)≤|
-1|+|
+1|,
∵|
-1|+|
+1|的最小值是2,∴f(x)≤2,
又由f(x)=|x-1|+|x-2|,得 x∈[0.5,2.5]时,f(x)≤2,故x的范围是[0.5,2.5].
(3)∵F(x)=mx+
,x∈[-2,+∞)是“平底型”函数
x2+2x+n=(mx-c)2
则m2=1,-2mc=2,c2=n;解得m=1,c=-1,n=1,①,或m=-1,c=1,n=1,②
①情况下,f(x)=
是“平底型”函数;
②情况下,f(x)=
不是“平底型”函数;
综上,当m=1,n=1时,为“平底型”函数.
存在区间[1,2]使得f1(x)=1,在区间[1,2]外,f1(x)>1,
f2(x)=x+|x-2|不是“平底型”函数,
∵在(-∞,0]上,f2(x)=2,在(-∞,0]外,f2(x)>2,(-∞,0]不是闭区间.
(2)若|t-k|+|t+k|≥|k|?f(x),(k∈R,k≠0)对一切t∈R恒成立
即 f(x)≤|
t |
k |
t |
k |
∵|
t |
k |
t |
k |
又由f(x)=|x-1|+|x-2|,得 x∈[0.5,2.5]时,f(x)≤2,故x的范围是[0.5,2.5].
(3)∵F(x)=mx+
x2+2x+n |
x2+2x+n=(mx-c)2
则m2=1,-2mc=2,c2=n;解得m=1,c=-1,n=1,①,或m=-1,c=1,n=1,②
①情况下,f(x)=
|
②情况下,f(x)=
|
综上,当m=1,n=1时,为“平底型”函数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询