高数:常微分方程--高阶微分方程,有三道题,求大神帮忙解答!
红色的是题目,黑色笔写的是答案。请不要复制网上的答案,我看过感觉步骤简略很多,求详细步骤!谢谢!-------------------------------------...
红色的是题目,黑色笔写的是答案。请不要复制网上的答案,我看过感觉步骤简略很多,求详细步骤!谢谢!
----------------------------------------------------------------------------------------------------------------------
下面这张是我自己写的:跟答案不对,请指教!
下面那些个上传垃圾文件的无良人,请自重!! 展开
----------------------------------------------------------------------------------------------------------------------
下面这张是我自己写的:跟答案不对,请指教!
下面那些个上传垃圾文件的无良人,请自重!! 展开
2个回答
展开全部
第一题的问题:f(1)=2隐含着的条件是,f'(1)=2
所以,f(x)=c1x^2+c2,f‘(x)=2c1x
c1=c2=1
第二题。你已经得出了y''-y'-2y=f(x),将y=xe^x带入即可
f(x)=(d/dx-2)(d/dx+1)xe^x=e^x(d/dx-1)(d/dx+2)x=(1-2x)e^x
第三题。直到y''+y=-sinx都是正确的,我就不按你的做法继续了
先解方程:y''+y=-e^(ix)
y=c1sinx+c2cosx+i/2xe^(ix)
则原方程解为y的虚部
y=c1sinx+c2cosx+1/2xcosx
f(0)=0
f'(0)=1
y(0)=c2=0
y'(0)=c1+1/2=1,c1=1/2
y=1/2sinx+1/2xcosx
常系数线性微分方程的求解有一些计算技巧,但是详讲起来篇幅较长
常数的问题,你看原式
f(x)=sinx+∫(0,x) tf(t)dt -x∫(0,x) f(t)dt
取x=0
f(0)=sin0+∫(0,0) tf(t)dt -0∫(0,0) f(t)dt=0
就是这样推常数
所以,f(x)=c1x^2+c2,f‘(x)=2c1x
c1=c2=1
第二题。你已经得出了y''-y'-2y=f(x),将y=xe^x带入即可
f(x)=(d/dx-2)(d/dx+1)xe^x=e^x(d/dx-1)(d/dx+2)x=(1-2x)e^x
第三题。直到y''+y=-sinx都是正确的,我就不按你的做法继续了
先解方程:y''+y=-e^(ix)
y=c1sinx+c2cosx+i/2xe^(ix)
则原方程解为y的虚部
y=c1sinx+c2cosx+1/2xcosx
f(0)=0
f'(0)=1
y(0)=c2=0
y'(0)=c1+1/2=1,c1=1/2
y=1/2sinx+1/2xcosx
常系数线性微分方程的求解有一些计算技巧,但是详讲起来篇幅较长
常数的问题,你看原式
f(x)=sinx+∫(0,x) tf(t)dt -x∫(0,x) f(t)dt
取x=0
f(0)=sin0+∫(0,0) tf(t)dt -0∫(0,0) f(t)dt=0
就是这样推常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询