已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}
已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)求数列{|an...
已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)求数列{|an-bn|}的前12项的和S12.
展开
1个回答
展开全部
(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
则
,解得
,
∴an=-2n+13,bn=2n-1;
(Ⅱ)由(Ⅰ)得:|an-bn|=|13-2n-2n-1|;
(i)当0<n≤3时,an>bn,an-bn=13-2n-2n-1;
(ii)n≥4时,an<bn,|an-bn|=bn-an=2n-1-(13-2n).
∴|an-bn|=
,
∴S12=(11-1)+(9-2)+(7-4)-(5-8)-…-(-11-211)
=20+(8+16+…+211)-[5+3+…+(-11)]
=4135.
则
|
|
∴an=-2n+13,bn=2n-1;
(Ⅱ)由(Ⅰ)得:|an-bn|=|13-2n-2n-1|;
(i)当0<n≤3时,an>bn,an-bn=13-2n-2n-1;
(ii)n≥4时,an<bn,|an-bn|=bn-an=2n-1-(13-2n).
∴|an-bn|=
|
∴S12=(11-1)+(9-2)+(7-4)-(5-8)-…-(-11-211)
=20+(8+16+…+211)-[5+3+…+(-11)]
=4135.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询