
已知等比数列an中,a1+a3=5,a3+a5=20,求an通项公式,
6个回答
展开全部
设an的通项公式为:an=a1q^(n-1)
由题目已知得:
a1+a1q^2=5
a1q^2+a1q^4=20
解得:a1=1;q=2 通项公式为an=2^(n-1)
a1=1;q=-2 通项公式为an=(-2)^(n-1)
由题目已知得:
a1+a1q^2=5
a1q^2+a1q^4=20
解得:a1=1;q=2 通项公式为an=2^(n-1)
a1=1;q=-2 通项公式为an=(-2)^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设公比为q
a1+a3=a1(1+q^2)=5……(1)
a3+a5=a3(1+q^2)=20……(2)
由(2)/(1)得:
a3/a1=q^2=4
q=±2
将q^2代入(1)得:
a1=1
当q=2时
an=a1q^(n-1)=2^(n-1)
当q=-2时
an=a1q^(n-1)=(-2)^(n-1)
a1+a3=a1(1+q^2)=5……(1)
a3+a5=a3(1+q^2)=20……(2)
由(2)/(1)得:
a3/a1=q^2=4
q=±2
将q^2代入(1)得:
a1=1
当q=2时
an=a1q^(n-1)=2^(n-1)
当q=-2时
an=a1q^(n-1)=(-2)^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1+a3=a1+a1*q^2=5①
a3+a5=a1*q^2+a1*q^4=20②
②÷①得q=±2,从而代入①得a1=1
故an通项公式为an=(-2)^(n-1)或an=2^(n-1)
a3+a5=a1*q^2+a1*q^4=20②
②÷①得q=±2,从而代入①得a1=1
故an通项公式为an=(-2)^(n-1)或an=2^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=1;
a2=2;
a3=4;
a4=8;
a5=16;
满足题目中a1+a3=5,a3+a5=20的要求
此时an=2^(n-1)
a2=2;
a3=4;
a4=8;
a5=16;
满足题目中a1+a3=5,a3+a5=20的要求
此时an=2^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=1;q=2 通项公式为an=2^(n-1)
a1=1;q=-2 通项公式为an=(-2)^(n-1)
a1=1;q=-2 通项公式为an=(-2)^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询