已知函数f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.(1)若函数f(x)是偶函数,求函数

已知函数f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.(1)若函数f(x)是偶函数,求函数f(x)在区间[-1,3]上的最小值;(... 已知函数f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.(1)若函数f(x)是偶函数,求函数f(x)在区间[-1,3]上的最小值;(2)用函数的单调性的定义证明:当a≤1时,f(x)在区间[1,+∞)上为减函数;(3)求对于任意a∈[-3,+∞),函数f(x)的图象恒在函数g(x)图象上方的实数x的取值范围. 展开
 我来答
浮云高贵IM
2015-02-05 · 超过68用户采纳过TA的回答
知道答主
回答量:126
采纳率:71%
帮助的人:59.3万
展开全部
(1)∵函数f(x)是偶函数,∴f(-x)=f(x),x∈R恒成立,
即:-2x2+(a+3)x+1-2a=-2x2-(a+3)x+1-2a
∴a=-3
∴f(x)=-2x2+7;易知其对称轴为:x=0
∴当x=0时,f(x)max=7,当x=3时,f(x)min=-11;
(2)当a≤1时,f(x)=-2x2+(a+3)x+1-2a,下面证明函数f(x)在区间[1,+∞)上是减函数.
设x1>x2≥1,则f(x1)-f(x2)=)=-2x12+(a+3)x1+1-2a-(-2x22+(a+3)x2+1-2a,)
=-2(x12-x22)+(a+3)(x1-x2
=(x1-x2)[-2(x1+x2)+a+3]
∵x1>x2≥1,则x1-x2>0,且-2(x1+x2)<-4,
∵a≤1,∴a+3≤4,∴-2(x1+x2)+a+3<0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
故函数f(x)在区间[1,+∞)上是减函数.
(3)对于任意a∈[-3,+∞),函数f(x)的图象恒在函数g(x)图象上方,
即-2x2+(a+3)x+1-2a>x(1-2x)+a在a∈[-3,+∞)上恒成立,
即(x-3)a+2x+1>0在a∈[-3,+∞)上恒成立,
设h(a)=(x-3)a+2x+1,
x?3>0
h(?3)>0
,即
x?3>0
?3(x?3)+2x+1>0

解得3<x<10,
∴实数x的取值范围为(3,10).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式