如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个点.PE⊥AD交直线BC于点E.(1)若∠B=30°,∠ACB=70
如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个点.PE⊥AD交直线BC于点E.(1)若∠B=30°,∠ACB=70°,则∠ADC=______度,∠E=___...
如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个点.PE⊥AD交直线BC于点E.(1)若∠B=30°,∠ACB=70°,则∠ADC=______度,∠E=______度;(2)若∠B=58°,∠ACB=102°,则∠ADC=______度,∠E=______度;(3)若∠B=m°,∠ACB=n°,且n>m,请用含m、n的式子表示∠ADC、∠E的度数.(写出结论即可,不需要证明)
展开
1个回答
展开全部
∵AD平分∠BAC,
∴∠BAD=∠CAD=
∠BAC,
(1)∵∠B+∠ACB+∠BAC=180°,
∵∠B=30°,∠ACB=70°,
∴∠CAB=80°,
∴∠BAD=
×80°=40°,
∴∠ADC=∠B+∠BAD=30°+40°=70°,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-70°=20°,
故答案为:70,20.
(2)解:∵∠B=58°,∠ACB=102°,
与(1)解法类似求出∠ADC=68°,∠E=22°,
故答案为:68,22.
(3)答:∠ADC的度数是
度,∠E的度数是
度.
∴∠BAD=∠CAD=
1 |
2 |
(1)∵∠B+∠ACB+∠BAC=180°,
∵∠B=30°,∠ACB=70°,
∴∠CAB=80°,
∴∠BAD=
1 |
2 |
∴∠ADC=∠B+∠BAD=30°+40°=70°,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-70°=20°,
故答案为:70,20.
(2)解:∵∠B=58°,∠ACB=102°,
与(1)解法类似求出∠ADC=68°,∠E=22°,
故答案为:68,22.
(3)答:∠ADC的度数是
180+m?n |
2 |
n?m |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询