设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为______

设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为______.... 设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为______. 展开
 我来答
司幼荷4j
2014-11-17 · 超过58用户采纳过TA的回答
知道答主
回答量:123
采纳率:100%
帮助的人:56.7万
展开全部
设平面PAB与二面角的棱l交于点Q,
连结AQ、BQ得直线l⊥平面PAQB,
∵P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,
∴∠AQB是二面角α-l-β的平面角,∴∠AQB=60°,
∴△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,
由余弦定理得:
AB2=PA2+PB2-2PA?PAcos120°
=42+22-2×4×2×(-
1
2
)=28,
∴AB=
28
=2
7

故答案为:2
7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式