数学排列组合中,A 和 C的区别
一、定义不同:
(1)排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。
(2)组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
二、计算方法不同:
(1)排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
(2)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
(1)A(4,2)=4!/2!=4*3=12
(2)C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列组合的难点:
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力。
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解。
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大。
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
C(组合)与A(排列)最本质的区别在于对取出的元素是否进行排序或者说有顺序要求。A即所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。C即组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
扩展资料:
排列组合基本计数原理
一、加法原理和分类计数法
⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2……第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
二、乘法原理和分步计数法
⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
⒉合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
3.与后来的离散型随机变量也有密切相关。
参考资料来源:百度百科-排列组合
C :组合,没有方向性。
例如,一条铁路有5个车站,
一共有A(5,2)=5*4=20种车票,
一共有C(5,2)=5*4/【2*1】=10种票价